Double-blind, Placebo-Controlled, Dose-Response fMRI Trial of Buprenorphine: Differential Valence of BOLD Response Modulation to Innocuous and Noxious Stimuli in Sensory and Striatal Regions

J. Upadhyay1,2, J. Anderson1,2, A. J. Schwarz2,3, R. Baumgartner2,4, A. Coimbra2,4, J. Knudsen1,2, E. George2,4, J. Bishop1,2, S. Keswani1,2, B. Robertson1,2, R. Schreiber1,2, D. Bleakman2,4, R. Hargreaves2,4, S. L. Beccera1,2, and D. Borsook1,2

1P.A.I.N. Group, Brain Imaging Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, United States, 2Imaging Consortium for Drug Development, Belmont, MA, United States, 3Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States, 4Biometrics Research Department, Merck Research Laboratories, Rahway, NJ, United States, 5Imaging Department, Merck Research Laboratories, West Point, PA, United States, 6Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States, 7Sepracor Inc., Marlborough, MA, United States, Basic Neuroscience Department, Merck Research Laboratories, West Point, PA, United States

Introduction: Blood-oxygenation level dependent (BOLD) functional Magnetic Resonance Imaging (fMRI) has begun to be applied to probe how specific therapeutics modulate the acute central nervous system (CNS) response to noxious stimuli. Complementary to more traditional behavioral and pharmacokinetic/pharmacodynamic methods, BOLD fMRI provides information on neuronal systems differentially affected by drugs with different mechanisms and may be more sensitive than subjective ratings of perceived pain [1,2]. Buprenorphine (Buprenex) is a mixed opioid partial agonist and antagonist commonly used to treat opioid addiction, but has been shown to have both analgesic and antihyperalgesic effects in healthy human subjects [3]. We characterized the effect of two doses of buprenorphine in modulating the CNS response to a paradigm battery (brush, von Frey and noxious heat) that stimulated both mechanical and thermal receptors and provided both innocuous and noxious stimulation. This design enabled the drug effect to be characterized as a function of differential somatosensory stimulus as well as brain region.

Methods: 24 right-handed, healthy male subjects participated in this study. Each subject underwent both placebo and Buprenorphine scanning sessions separated by ~14 days, with 12 receiving the low dose (0.1 mg/70kg) and 12 receiving the high dose (0.2 mg/70kg) of the drug. Buprenorphine or placebo (physiological saline) were infused intravenously approx. 20min prior to the fMRI paradigm battery. In each dose cohort, 6 subjects received placebo first and 6 received Buprenorphine first. fMRI parameters: fMRI data were collected on a 3T Siemens Trio Scanner. GE-EPI Parameters: TR = 2500 msec, TE = 30 msec, FOV = 224x224, FA = 90°, # of Slices = 41 axial slices and # of Volumes = 122. Each subject underwent three functional runs where the dorso of the subject’s left foot was stimulated with a Velcro brush (innocuous stimulus), a von Frey filament (mildly noxious stimulus) and with heat (noxious stimulus). For the heat functional scans, the heat stimulus corresponded to a subject-specific threshold temperature. The average threshold temperature for 0.1 and 0.2 mg/70kg dose cohorts were 46.9 ± 0.7 °C and 46.4 ± 0.7 °C, respectively. All image preprocessing (coregistration, spatial smoothing, temporal filtering, etc) and GLM analysis was performed using FSL. Group-level results shown below were achieved using a mixed-effects paired comparison. Self-reported pain ratings were recorded simultaneously during fMRI.

Results: Brain structures of sensory/pain and opioid circuitry [1,2] were identified as being activated by all paradigms in the placebo condition. The BOLD response to the saline condition is shown in red, while the traces representing the Buprenorphine condition are shown in blue, reflecting a dose-dependent attenuation of the BOLD fMRI signal by Buprenorphine. Of the three functional paradigms, brush, von Frey and heat, a reduction in self-reported pain ratings was observed for the heat stimulus at the high, but not the low, dose condition (Figure 2). The difference in the heat response for the saline conditions between low and high dose cohorts was not significant (p=0.22).

Discussion: This study demonstrated (1) a differential degree of drug modulation of CNS responses to innocuous vs. noxious stimuli, and (2), interestingly, a differential valence of modulation in striatal vs. sensory brain regions; the higher dose of Buprenorphine strongly attenuated the responses in somatosensory cortical and thalamic regions, but potentiated structures such as the putamen, amygdala and anterior cingulate cortex whilst eliciting a robust subjective analgesic effect. This finding may reflect the mixed pharmacology of buprenorphine (mu-opioid partial agonist/kappa-opioid antagonist), in contrast to opioid agonists previously studied using fMRI.