Hybrid US/MR System for Real-Time Compensation of Breathing Motion Artifacts in Cardiovascular MRI at 3 Tesla

D. Giese1, A. Bongers2, J. Jenne2, M. Günther1, B. Jung2, D. Foell3, M. Zaitsev1, J. Hennig2, W. de Boer4, and M. Markl1

1Dept. of Diagnostic Radiology, Medical Physics, University Hospital Freiburg, Freiburg, Germany; 2mediri GmbH, Heidelberg, Germany; 3Cardiology and Angiology, University Hospital Freiburg, Freiburg, Germany; 4Institut für Experimentelle Kernphysik, Universität Karlsruhe (TH), Karlsruhe, Germany

Introduction: Breathing artifacts in ECG synchronized cardiac CINE acquisitions remain a major source of degraded image quality in clinical applications. Due to restrictions requiring temporal and/or spatial resolution using breath-holding acquisitions, image acquisition during free breathing is desirable for a number of applications [1]. Several methods for motion compensation or synchronization have been proposed for free-breathing acquisitions. Commonly used MR navigator gating techniques in combination with adaptive phase encoding line reordering schemes [2], however, suffer from disadvantages including steady-state interruption, signal saturation and low scan efficiencies. Slice following methods have been proposed, often however restricted by the uncertain correlation between heart and diaphragm motion [3]. As an alternative, external respiratory motion tracking devices offer several advantages, since information on breathing patterns can be acquired simultaneously with the MR acquisition and integrated into the imaging procedure in real-time. As shown previously, MR compatible ultrasound can be used simultaneously with MR data acquisition to directly monitor the motion of the diaphragm or heart in real time [4]. To date, the potential of ultrasonic imaging for motion tracking has not been fully exploited due to hardware and software integration issues. We present a straightforward integration of an ultrasound system in a 3 Tesla MR environment including a short latency real-time feedback implementation for prospective compensation of breathing motion in cardiovascular MRI. Results of ultrasound gated gradient echo acquisitions of a motion phantom as well as in-vivo time resolved cardiac imaging demonstrate the feasibility of the hybrid imaging technique.

Methods: A portable USB-connected ultrasound system (mediri GmbH) was hardware shielded by a copper RF cage and aluminium foil. The probe was fixed on a frame mounted on the scanner bed. The right hemidiaphragm was scanned by ultrasound during free breathing. Moving object coordinate tracking on the B-Mode images was performed using an algorithm based on conditional density propagation [5]. Data were transferred in real-time via UDP to the MR sequence [6]. An Accept/Reject Algorithm (ARA) in combination with an adaptive phase encoding line reordering algorithm was used in a Cartesian RF spoiled ECG synchronized k-space segmented (CINE) gradient echo sequence [2]. A single decision per heartbeat was made whether to accept or repeat the cycle (Fig.1). All measurements were performed on a 3T system (TimTrio, Siemens Medical Solutions, Germany). For comparison, MR navigator gating consisted of a simple crossed-pair navigator placed on the right hemi-diaphragm, executed at the end of each ECG cycle. Single slices of an MR compatible ultrasound motion phantom as well as a short axis cardiac slice were acquired (1.4x1.4x8mm3, GRAPPA (x2), TR/TE=3,7/1.33ms, 40 time frames, 6 k-space lines per phase). Image features and statistical noise behavior were analyzed using Matlab (The Mathworks, USA) and ImageJ (NIH, USA).

Results: 2D MR acquisitions of a motion phantom using ultrasound gating were acquired and demonstrated the feasibility of a real-time feedback ultrasound-MR system with minimal data latency. Refreshing rates of 8TR (ca. 40Hz) were achieved by using standard ultrasound B-Mode imaging. Motion artifacts were clearly reduced by diminishing the ARA acceptance window (Fig.2), i.e. by freezing the phantom motion. Compared to ungated acquisitions, in-vivo US gated acquisitions considerably improved blurring and ghosting (arrows Fig.3) due to subject respiration throughout the ECG cycle. Results were comparable to standard MR navigator gated acquisitions; reflected in similar motion artifact reduction (Table 1) and edge sharpness (Fig.4) for similar acceptance rates. Advantages compared to MR navigators included retained magnetization steady-state, higher ECG triggering accuracy (no RF interferences with electrodes by the navigator pulses) and absence of navigator-induced signal saturation effects.

Discussion: The feasibility of a hybrid Ultrasound/MR system at 3T including a real-time ultrasound feedback system was demonstrated. Phantom experiments and first in-vivo applications using ultrasonic gating for ECG triggered CINE MRI were performed. Short axis slices showed promising results; correcting for breathing motion artifacts, without further artifacts arising from the ultrasound device. Advantages compared to MR navigators include no steady-state interruption, no signal saturation and the possibility to directly track the heart movement. Future work will include latency-corrected heart motion tracking, isolating respiration-induced from heart beating motion. A combination with a prospective slice following method including translation, rotation and scaling parameters from the tracking algorithm may further improve image quality and/or acceptance rates. Moreover, a replacement of the electrode ECG-recording by direct ultrasound imaging of the cardiac motion will be considered.

Acknowledgements: Grant support by the Deutsche Forschungsgemeinschaft (DFG), Grant # MA 2383/4-1 and the Bundesministerium für Bildung und Forschung (BMBF), Grant # 01EVO706.


Fig.1: USMR Setup incl. data processing for gated acquisitions. Breathing motion is tracked; decisions are made for each ECG cycle, end-expiratory positions are favored for central k-space phase encoding steps.

Fig.2: US gated motion phantom images for diff. acceptance rates. The moving sphere appears immobile when gating.

Fig.3: Free breathing short axis cardiac acquisitions without (left) and with (right) US gating (acceptance rate: 27%).

Fig.4: Sobel-Filter based edge detection on non-gated (a), US-gated (b) and MR-gated (c) acquisitions for three different ECG time-points (t1,t2,t3).