New Methods for the Quantification of Myocardial Oxygen Consumption with 17O MRI

K. S. McCommis¹, X. He¹, D. R. Abendschein², P. M. Gupte³, R. J. Gropler¹, and J. Zheng¹
¹Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States, ²Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, United States, ³Rockland Technimed Ltd, Airmont, NY, United States

Purpose
PET has been the primary modality for myocardial oxygen consumption rate (MVO$_2$) measurements, but its use is limited by low spatial resolution, radiation exposure, and lack of broad availability. Preliminary studies using 17O MRI have shown great potential for the quantification of cerebral oxygen consumption in both human and animal subjects [1,2]. We hypothesize that these techniques can be applied in the quantification of MVO$_2$. In this initial study, we developed a series of imaging methods and hardware to examine the feasibility of quantifying MVO$_2$ in a canine model.

Methods
An injectable 17O autologous blood agent was made using the hardware shown in Figure 1. The “blood contrast agent” is the artificial blood, Oxyglobin (Biopure Corporation, Cambridge, MA) that is a solution consisting of chemically stabilized hemoglobin in a balanced salt solution. The equipment is essentially a circular loop with a 60-ml syringe to push high-pressure 17O gas into the circulating blood. The enrichment can reach up to 98%. We have developed a fast cardiac acquisition method for the quantification of myocardial T_2^* in vivo in order to monitor and quantify myocardial H_2^{17}O concentration [1]. The MRI sequence acquires a series of T_2^*-weighted images at up to 4 different spin-locking (SL) times (denoted TSL) within a breath-hold time.

Figure 1. The 17O-enriched blood was made by a circular device that consists of a patented Oxycart, pump, circulation tubes, and gas cylinder. The gas valves and 60-cc syringe control the amount of the gas. The blood reservoir serves as a blood buffer.

Four mongrel dogs (wt = 19.5 ± 1.2 kg) were used in this initial feasibility study. A 95% area coronary artery stenosis was created in one dog by an adjustable occluder around the proximal left-anterior descending coronary artery (LAD). All dogs were studied using a variety of doses (10-50 ml) of 17O-enriched blood or Oxy-17®, administrated intravenously. Dobutamine was also infused in the stenotic dog to evaluate elevated MVO$_2$. Bolus injections were performed in one normal dog and in the stenotic dog, while a slow infusion was performed in the other two normal dogs to monitor the T_2^* signal changes over 60-120 min. For a comparison, 17O-enriched blood was also injected to the last two normal dogs and the same imaging procedure was followed.

ROI measurements were performed in the entire myocardium in normal dogs and in the anterior stenosis subtended region (ANT) and remote normal perfused posterior region (POT). A simplified method to calculate MVO$_2$ was adopted from literature [2] for the quantification.

Results
Creation of H_2^{17}O metabolic water reduced T_2^* signals, while H_2^{16}O maintained the baseline signals (Figure 2). MVO$_2$ in Figure 2 at rest was calculated as 5.3 µmol/g/min which agrees well with MVO$_2$ measured by PET [3]. In the stenotic dog, MVO$_2$ in the ANT region reduced from 4.2 at rest to 3.6 µmol/g/min during dobutamine stress, while MVO$_2$ in the normal POS region increased from 3.2 at rest to 7.6 µmol/g/min during dobutamine stress.

Conclusions
This is the first time that the feasibility of quantifying MVO$_2$ has been demonstrated using an intravenous injection of 17O-enriched contrast agent.

References