Relationship Between Brain R2 and Liver and Serum Iron Concentrations in Elderly Men

M. J. House¹, T. St. Pierre¹, J. Olynk², E. Milward³, and D. Bruce²

¹School of Physics, The University of Western Australia, Crawley, Western Australia, Australia, ²School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia, ³School of Biomedical Sciences, The University of Newcastle, Newcastle, New South Wales, Australia

Introduction
Studies of iron overload in humans and animals suggest that brain iron is affected in a regionally specific way by changes in body iron status. We hypothesise that brain iron in healthy adults is also affected by changes in body iron status. To test our hypothesis we used MRI to measure the proton transverse relaxation rate (R_2) in 14 grey and white matter brain regions in twenty healthy elderly men (average age 76.1 years).

Methods
All MRI measurements were made on a 1.5T Siemens Avanto whole body scanner. For the brain scan, coronal images parallel to the brain stem were acquired with a multislice (20 slices) single spin-echo (SSE) pulse sequence with TR/TE (2500/17, 30, 45, 60, 90 ms). FerriScan® (1,2) MRI data were acquired for the measurement of liver iron concentration (LIC) during the same session as the brain scan. Axial images of the abdomen were acquired with a multislice (11 slices) single spin-echo pulse sequence with TR/TE (2500/6, 9, 12, 15, 18 ms). The transverse relaxation rate, R_2, was calculated by curve fitting each voxel signal intensity datum for all echo times to monoexponential (brain) or biexponential (liver) spin echo signal intensity equations. The average R_2 value of each brain region was acquired following the methodology of House et al. (3). Brain R_2 values (Figure 1) were compared to LIC measured using the Ferriscan® MRI technique and serum iron indices (iron, ferritin, transferrin, transferrin saturation) acquired at the time of the MRI scan (time point 2) and three years before the current study (baseline). Correlations between brain R_2 values and body iron indices were assessed with Spearman’s rank correlation coefficient.

Results
Post-mortem iron concentrations from the literature (4) were strongly correlated with mean R_2 values from five brain regions ($r = 0.99$, $p = 0.0008$). R_2 values in the medial globus pallidus were significantly correlated with LIC (left hemisphere $r = 0.669$, $p = 0.0013$; right hemisphere $r = 0.617$, $p = 0.0038$), baseline serum iron concentrations (left hemisphere $r = 0.611$, $p = 0.0042$), and baseline transferrin saturation (left hemisphere $r = 0.563$, $p = 0.0097$; right hemisphere $r = 0.637$, $p = 0.0025$) (Figure 2). R_2 values in the right ventral pallidum were significantly correlated with LIC ($r = 0.622$, $p = 0.0059$) (Figure 3). There was a significant negative correlation between brain R_2 values in the left corpus callosum and transferrin saturation measured at time point two ($r = -0.62$, $p = 0.0035$). There were no significant correlations between brain R_2 values and serum ferritin concentrations at either time point. In general, grey and white matter regions showed opposing correlations with body iron status.

Conclusions
Our results suggest that iron levels in specific grey matter brain regions are linked to the systemic iron status in elderly men. Liver iron concentrations, in particular, appear to show the strongest association with R_2 values in the brain. The trends we observed in grey and white matter suggest that the response of the elderly male brain to higher iron concentrations in peripheral organs is not uniform and is tissue and region specific.

References