Early impaired axonal transport in a triple transgenic mouse model of Alzheimer’s disease

J. Kim1, I-Y. Choi2, M. L. Michaels3, and S-P. Lee1,4

1Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS, United States; 2Department of Neurology, Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States; 3Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, United States; 4Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States

Introduction
Alzheimer’s disease (AD) is an irreversible neurodegenerative disorder and is the most common cause of dementia among people over 65 years of age. Significant efforts are being made on drug discovery and development to treat symptoms or slow the disease progression. The development of non-invasive neuroimaging methods would be enormously valuable to visualize early, yet subtle, changes in the AD brain, monitor the disease progression, and quantify the effect of drug intervention. Triple transgenic AD (3xTg) mice model harbors PS1M146V, APPSw and tauP301L and progressively develops both β-amyloid (Aβ) plaques and neurofibrillary tangle (NFT) pathology with accompanying neuronal death in brain regions similar to those seen in human AD [1]. Manganese (Mn2+) can enter excitable cells through voltage-gated calcium channels and can be transported via fast axonal transport mechanism through microtubules in axons toward the projecting neurons. We used manganese-enhanced MRI (MEMRI) to assess the age associated alterations of fast axonal transport rates in 3xTg animals.

Methods
All MR studies were performed at 9.4 T Varian system equipped with a 12 cm gradient coil (40 G/cm, 250 μs) and interfaced to a Varian INOVA console (Varian Inc., CA). A 6-cm diameter Helmholtz volume transmit coil and a 7-mm diameter surface receive coil were used for MR imaging. Three age groups of 3x-Tg mice and age-matched wild type (wt) mice (2 months, n=5; 3 months, n=8; 15 months, n=5 per each genotype) were scanned. Anesthesia was induced by 4% isoflurane mixed with 4 L/min air and 1L/min O2 and maintained by 1-1.5% isoflurane. Body temperature was maintained at 37˚C using a circulating hot water pad and a temperature controller (Cole-Palmer, NY). Respiration, heart rate, and blood oxygen level were also monitored via respiration pillow and mouse pulse oximeter (SA Instruments, NY; STARR Life Sciences, OH). MR data were acquired before and 1, 6, and 24 h after unilateral and intranasal administration of MnCl2 solution (160 mM, 4 μl) in four separate MRRI sessions. Animals were stimulated using amyl acetate for 15 min to enhance uptake of Mn2+ in the olfactory neurones. T1 maps were measured using a modified Look-Locker multislice sequence to acquire multiple phase encodings per inversion pulse (TR/TE = 4/2 ms, FOV = 2 cm, matrix = 128 x 128, nt = 4, thk = 0.5 mm, flip angle = 20°, 22 inversion times, acquisition time = 8.5 min). B1 maps were measured to correct the effect of flip angle variations in T1 mapping using a B1 mapping sequence [2] (TR/TE = 200/3.7 ms, matrix = 128 x 128, nt = 4, thk = 0.5 mm). High resolution T1-weighted (T1w) spin-echo data were also acquired (TR/TE = 600/10 ms, nt =2, matrix = 256 x 256, thk = 0.6 mm, scan time = 5 min). T1 and B1 maps were generated using software written in IDL (RSL, CO). Bulk axonal transport rates of olfactory neurones were calculated from the time course of R1 in olfactory bulb (OB). Trans-synaptic axonal transport efficiency was estimated from the R1/Tr; changes in the olfactory cortex (OC).

Results and Discussion
Figure 1 shows T1w image (a) and corresponding T1 map (b) of OB of a 3 month old mouse at 24 h post MnCl2 administration. Unilateral signal enhancement and reduction of T1 were clearly visible at the right OB. Temporal changes R1 of 3xTg in OB of 3 month old mice is shown in Fig. 1c. R1 in the right OB of 3xTg mice was significantly lower at 6 h and 24 h post MnCl2 administration, indicating impaired bulk axonal transport of Mn2+ in olfactory neurones of 3xTg animals compared with that of age-matched wt animals (p = 0.05 for 6 h, p = 0.003 for 24 h, n = 8 (wt), n = 5 (3xTg)).

Trans-synaptic transport of Mn2+ in olfactory cortex was shown in Fig. 2. Shortening of T1 in OB in OC was evident from the T1w image (a) and the corresponding T1 map (b) at 24 h post MnCl2 administration. Figure 2(c) shows comparison of R1 changes over 24 h in OC at 2, 3 and 15 months old 3xTg and age-matched wt mice. Reduction of R1 changes was observed in 3 months old mice (p = 0.01, n = 8 (wt), n = 5 (3xTg)) and 15 months old (p = 0.06, n= 4 each group). Mn2+ uptake at the olfactory sensory neurones was estimated from the signal enhancement at the turbinate areas (arrow in Fig. 1(a)). No significant difference of signal enhancement in turbinate between 3xTg and wt mice was found in all three age groups. Based on the similar uptake of Mn2+ at the olfactory neurones, the lower Mn2+ concentration in OB and OC of 3xTg mice can be interpreted as the lowered axonal transport rates in olfactory sensory neurones and projecting neurones from OB to OC. The observation of slowed axonal transport in 3xTg mice compared with that in age-matched wt mice as early as 3 months of age suggests the impairment of axonal transport is an early event in AD pathology preceding deposition of Aβ plaques and neurofibrillary tangles. It is also consistent with the previous observation of lowered axonal transport rates in a different transgenic model of AD (tg2576) prior to Aβ plaque deposition [3].

References