Facilitated Detection and Quantification of Theragnostic Magnetocapsules by Analyzing MRI Susceptibility Perturbations

P. H. Mills1,2, T. Link1, A. Arepally3, J. D. Thompson4, J. W. Bulte1, and E. T. Ahrens1,2

1Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States; 2Pittsburgh NMR Center for Biomedical Research, Pittsburgh, PA, United States; 3Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, United States; 4Division of Materials Science & Technology, Group 10, Los Alamos National Laboratory, Los Alamos, NM, United States

Introduction

Recently, non-invasive imaging studies have been used to follow the delivery and engraftment of pancreatic islets that are encapsulated in shells composed of alginate crosslinked with poly-L-lysine and containing the FDA-approved superparamagnetic iron-oxide (SPIO) Feridex (Berlex Labs, Montville NJ) (1). These capsules are stable, have a uniform diameter, and contain a Feridex iron content that is three orders of magnitude higher than typical SPIO-labeled cells. Each capsule is permeable to metabolites, but not antibodies, thus immunosuppressive therapy is reduced or completely avoided. These capsules facilitate MRI-tracking of grafted islets while offering immunoprotection.

Detecting SPIO deposits in conventional MRI presents a challenge when contrast is subtle relative to intrinsic sources. Here, we apply a post-processing method, called Phase map cross-correlation Detection and Quantification (PDQ) (2), that can automatically identify magnetocapsules throughout an MRI volume, count them, and measure their magnetic moment. The PDQ method has previously been shown to generate stark positive-contrast images, provides quantitative analysis of label cell numbers, and works effectively even in low-SNR images (2).

We apply the PDQ method to a gel phantom containing −10, 450 μm diameter magnetocapsules. The magnetocapsules were made with three different Feridex concentrations (10%, 5%, and 2.5% v/v). Using standard volumetric MRI data, apparent volumetric magnetocapsules were automatically detected, counted, and the magnetic moment per capsule was calculated. For verification, the average magnetic moment of the 10% Feridex magnetocapsules was measured using a SQUID magnetometer.

Theory

An MRI dataset is generally complex-valued, and typically only the magnitude image is displayed while phase angle information is discarded. A voxel’s phase angle is proportional to its local magnetic field as:

\[\theta = \gamma TE \Delta B_z \]

where \(\gamma \) is the gyromagnetic ratio, \(TE \) is echo time, and \(\Delta B_z \) is the difference in magnetic field strength relative to the primary magnetic field, \(B_0 \). We assume each magnetocapsule is a spherical SPIO deposit, and that it behaves as a magnetic dipole, creating a magnetic field perturbation that can be described analytically by (3):

\[\Delta B_z(r, \theta) = \frac{2 \pi \mu_0}{3} B_0 \left(\frac{a}{r} \right) (3 \cos^2 \theta - 1) \]

where \(\Delta \phi \) is the magnetic susceptibility difference between the spheroid and background material, \(a \) is spheroid radius, \(r \) is distance from its center, and \(\theta \) is the angular deviation from the direction of \(B_0 \). The PDQ method combines Eqs. [1] & [2] to generate a 3D phase-offset ‘dipole template,’ then calculates the normalized cross-correlation value between the template and high-resolution MRI phase data to identify occurrences of a magnetic dipole (4). Cross-correlation overlays the search template onto every template-sized patch in the phase image, resulting in a 3D similarity matrix image that contains positive-contrast spots indicating apparent dipoles (i.e., magnetocapsules) against a null background. As dipoles are located throughout a volume, their biodistribution can be visualized and their magnetic moment measured. To measure the magnetic moment of each SPIO deposit, a Least-Squares Fit (LSF) can be made between its phase-image impression and the template. Assuming magnetocapsules have the same radius, the resulting LSF fit value for each magnetocapsule can be combined with Eqs. [1] & [2] to back-calculate \(\Delta \phi \) for a particular deposit. The susceptibility can then be used to calculate the magnetic moment of the SPIO deposit using the relation:

\[m \text{(emu)} = \left(\frac{1000 \times a^3}{3 \mu_0} \right) \left(\frac{1}{Z} \right) \]

where \(\mu_0 = 1.262 \times 10^{-6} \text{T} \cdot \text{m/A} \) is the permeability of free space.

Methods

MRI data were acquired at 4.7 T using a 3D gradient-echo (GRE) pulse sequence on a set of 12 agarose gel phantoms containing 2.5%, 5%, and 10% (v/v) Feridex magnetocapsules in suspension (n=3, 5, 4 respectively). Imaging parameters were TE/TR=1.2/300 ms, 133 isotropic resolution, and 18 signal averages. Resulting MR phase data were unwrapped using Prelude, a 3D unwrapping algorithm (5). Background magnetic field phase-encoding ramps were removed by fitting and subtracting a linear gradient from each volumetric dataset. 3D templates sized 9×9×9 pixels (1197 voxels) were created for each magnetocapsule type, and those denoted ‘estimate’ were calculated by extending the SQUID measurement to the 5% and 2.5% Feridex magnetocapsules.

Results / Conclusions

FIG. 1. PDQ-calculated magnetic moment distribution for 3,692 individual magnetocapsules. Magnetocapsules were randomly dispersed in 12 separate agarose gel phantoms. Numerical magnetic moment values are in Table 1. PDQ’s ability to measure magnetic moment is demonstrated by its strong correlation to Feridex concentration. This distribution also suggests that PDQ results are sufficiently consistent across separate MRI scans to allow for compiling and comparing results between different samples. Inlay shows typical sample consisting of 1000+ capsules suspended in agarose gel.

<table>
<thead>
<tr>
<th>Magnetocapsule (v/v)</th>
<th>Diameter (microns)</th>
<th>Magnetic Moment (emu) B0=4.7 T, 310 K</th>
<th>Magnetic Moment (emu) PDQ Measurement</th>
<th>Difference in Magnetic Moment</th>
<th>Volume Susceptibility (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% Feridex</td>
<td>450 +/- 40</td>
<td>8.1 +/- 0.2 e-6 (SQUID)</td>
<td>8.0 +/- 0.8 e-6 (PDQ)</td>
<td>1%</td>
<td>1.9e-5</td>
</tr>
<tr>
<td>5% Feridex</td>
<td>450 +/- 40</td>
<td>4.1 +/- 0.2 e-6 (estimate)</td>
<td>5.2 +/- 0.6 e-6 (PDQ)</td>
<td>21%</td>
<td>0.96 e-5</td>
</tr>
<tr>
<td>2.5% Feridex</td>
<td>450 +/- 40</td>
<td>2.0 +/- 0.2 e-6 (estimate)</td>
<td>2.4 +/- 0.4 e-6 (PDQ)</td>
<td>17%</td>
<td>0.48 e-5</td>
</tr>
</tbody>
</table>

References
