Effects of Ischemia-Reperfusion Injury on 23Na Relaxation Times and its Implications on Quantification of Corticomedullary Sodium Concentration by 23Na MRI

B. Atthe1, A. Babsky1, and N. Bansal1
1Radiology, Indiana University School of Medicine, Indianapolis, Indiana, United States

INTRODUCTION

The maintenance of the corticomedullary sodium gradient, an indicator of normal tubular function in the kidney, is presumably lost early in the course of acute tubular necrosis (ATN) [1]. Ischemia remains the major cause of ATN in the adult population. 23Na MRI has been applied to study the alterations in renal sodium distribution in the rat kidney during ischemia-reperfusion (IR) injury [2]. The observed changes in 23Na MRI signal intensity (SI) of the renal medulla and cortex during ischemia and reperfusion can be caused by a) a change in sodium concentration, and/or b) changes in 23Na relaxation times. In this study, 23Na MRI and MRS are applied to evaluate the effects of renal ischemia and reperfusion on 23Na relaxation times in renal medulla and cortex, and the changes in $[Na^+]$ due to IR injury are quantified by applying T_1 and T_2 corrections.

METHODS

23Na MRI: All 23Na MR experiments were performed on a Varian 9.4-Tesla, 31-cm horizontal bore system equipped with a 12-cm gradient insert. Effect of ischemia and reperfusion on 23Na MRI SI was investigated in Wistar rats (n=5) using a home-built 50 mm diameter loop-gap resonator tuned to 105.9 MHz. A 10 mm diameter tube containing 50 mM NaCl was positioned next to the rat and used as a signal intensity reference. A 3D 23Na gradient-echo (GE) imaging sequence with the following parameters was used: 50 ms repetition time (TR), 4.5 ms echo-time (TE), 64 × 64 × 16 data matrix over a field of view of 6 × 6 × 6 cm. Weighted signal summation (WSS) was used to improve SNR. On average, 9.67 transients were collected per phase-encoding step. 23Na images were collected every 10 minute during baseline, 50 min ischemia and 50 min reperfusion periods. In-magnet ischemia was induced by a snare taut placed around the vascular pedicle. Reperfusion can be caused by a) a change in sodium concentration, and/or b) changes in tissue water content.

23Na fast- and slow T$_2$ (T_{2f} and T_{2s}, respectively) and T_1 of the whole kidney were measured by MRS on separate cohort of rats (n=4) using a 10-mm-diameter surface coil directly placed on exposed kidney. 23Na T$_2$ was measured using a pulse-burst saturation recovery pulse sequence consisting of 10 saturation pulses followed by an incremental delay (16 values ranging from 0.05 to 200 ms, each) and 50 ms delay following saturation. A 3D 23Na GE imaging sequence with similar imaging parameters as describe above was used. For T_2 measurements, the image matrix size was reduced to $64 \times 32 \times 8$ and five 23Na images were collected with a 4.5 ms TE and 10, 20, 50, 80 and 120 ms TR. T_2 measurements were repeated every ~16 min during normal perfusion, 50 min ischemia and 50 min reperfusion. T_1 of the medulla and cortex was computed by least square fitting the SI of the regions of interest (ROI) to a mono-exponential function. For T_2 measurements, the image matrix size was reduced to $64 \times 32 \times 8$, the readout gradient was increased by a factor 10 to allow shorter TE and ten 23Na images were collected with a 50 ms TR and 1.5, 2.2, 3.5, 4.5, 6, 8, 11, 15, 19 and 25 ms TE. T_2 measurements were repeated every ~25 min during normal perfusion, 50 min ischemia and 50 min reperfusion. Least squares curve fitting of the T_2 image data to a bi-exponential function did not give a reproducible value for T_{2s} because the T_{2s} in tissue is very short. Thus T_2 and the relative fractions of the fast and slow components for the whole kidney from the spectroscopy experiments were used to calculate T_{2f} of the cortex and medulla by bi-exponential curve fitting of SI.

RESULTS

1H MRS and 23Na MRI SI were investigated in Wistar rats (n=5) using a home-built 50 mm diameter loop-gap resonator. A 3D 1H MRI with similar imaging parameters as describe above was used. For T_2 measurements, the image matrix size was reduced to $64 \times 32 \times 8$, the readout gradient was increased by a factor 10 to allow shorter TE and ten 1H images were collected with a 50 ms TR and 1.5, 2.2, 3.5, 4.5, 6, 8, 11, 15, 19 and 25 ms TE. T_2 measurements were repeated every ~25 min during normal perfusion, 50 min ischemia and 50 min reperfusion. T_1 of the medulla and cortex was computed by least square fitting the SI of the regions of interest (ROI) to a mono-exponential function. For T_2 measurements, the image matrix size was reduced to $64 \times 32 \times 8$, the readout gradient was increased by a factor 10 to allow shorter TE and ten 23Na images were collected with a 50 ms TR and 1.5, 2.2, 3.5, 4.5, 6, 8, 11, 15, 19 and 25 ms TE. T_2 measurements were repeated every ~25 min during normal perfusion, 50 min ischemia and 50 min reperfusion. T_1 of the medulla and cortex was computed by least square fitting the SI of the regions of interest (ROI) to a mono-exponential function. For T_2 measurements, the image matrix size was reduced to $64 \times 32 \times 8$, the readout gradient was increased by a factor 10 to allow shorter TE and ten 23Na images were collected with a 50 ms TR and 1.5, 2.2, 3.5, 4.5, 6, 8, 11, 15, 19 and 25 ms TE. T_2 measurements were repeated every ~25 min during normal perfusion, 50 min ischemia and 50 min reperfusion. Least squares curve fitting of the T_2 image data to a bi-exponential function did not give a reproducible value for T_{2s} because the T_{2s} in tissue is very short. Thus T_2 and the relative fractions of the fast and slow components for the whole kidney from the spectroscopy experiments were used to calculate T_{2f} of the cortex and medulla by bi-exponential curve fitting of SI.

23Na MRI SI was investigated in Wistar rats (n=5) using a home-built 50 mm diameter loop-gap resonator tuned to 105.9 MHz. A 10 mm diameter tube containing 50 mM NaCl was positioned next to the rat and used as a signal intensity reference. A 3D 23Na gradient-echo (GE) imaging sequence with the following parameters was used: 50 ms repetition time (TR), 4.5 ms echo-time (TE), 64 × 64 × 16 data matrix over a field of view of 6 × 6 × 6 cm. Weighted signal summation (WSS) was used to improve SNR. On average, 9.67 transients were collected per phase-encoding step. 23Na images were collected every 10 minute during baseline, 50 min ischemia and 50 min reperfusion periods. In-magnet ischemia was induced by a snare taut placed around the vascular pedicle. Reperfusion can be caused by a) a change in sodium concentration, and/or b) changes in tissue water content.

23Na fast- and slow T$_2$ (T_{2f} and T_{2s}, respectively) and T_1 of the whole kidney were measured by MRS on separate cohort of rats (n=4) using a 10-mm-diameter surface coil directly placed on exposed kidney. 23Na T$_2$ was measured using a pulse-burst saturation recovery pulse sequence consisting of 10 saturation pulses followed by an incremental delay (16 values ranging from 0.05 to 200 ms, each) and 50 ms delay following saturation. A 3D 23Na GE imaging sequence with similar imaging parameters as describe above was used. For T_2 measurements, the image matrix size was reduced to $64 \times 32 \times 8$ and five 23Na images were collected with a 4.5 ms TE and 10, 20, 50, 80 and 120 ms TR. T_2 measurements were repeated every ~16 min during normal perfusion, 50 min ischemia and 50 min reperfusion. T_1 of the medulla and cortex was computed by least square fitting the SI of the regions of interest (ROI) to a mono-exponential function. For T_2 measurements, the image matrix size was reduced to $64 \times 32 \times 8$, the readout gradient was increased by a factor 10 to allow shorter TE and ten 23Na images were collected with a 50 ms TR and 1.5, 2.2, 3.5, 4.5, 6, 8, 11, 15, 19 and 25 ms TE. T_2 measurements were repeated every ~25 min during normal perfusion, 50 min ischemia and 50 min reperfusion. Least squares curve fitting of the T_2 image data to a bi-exponential function did not give a reproducible value for T_{2s} because the T_{2s} in tissue is very short. Thus T_2 and the relative fractions of the fast and slow components for the whole kidney from the spectroscopy experiments were used to calculate T_{2f} of the cortex and medulla by bi-exponential curve fitting of SI.

23Na MRI SI during the early evolution of ATN caused by ischemia-reperfusion injury.

CONCLUSION

23Na MRI revealed a marked decrease in medulla and cortex 23Na MRI SI during the early evolution of ATN caused by ischemia-reperfusion injury. 23Na relaxation time measurements by 23Na MRI and MRS showed that sodium relaxation characteristics are similar in renal medulla and cortex in normal kidney. Ischemia causes a significant decrease in the relaxation times which affects the calculation of medulla and cortex $[Na^+]$ from 23Na MRI data. However, the changes in relaxation times for the medulla and cortex are identical, thus the medulla to cortex 23Na SI ratio represents $[Na^+]$ in the two compartments during ischemia and reperfusion.

REFERENCES