Molecular characterization of the relationship between hypoxia, total choline and breast cancer stem cell markers

B. Krishnamachary¹, M-F. Penel¹, S. Nimmagadda¹, M. Solaiyappan², D. Artemov¹, K. Glunde¹, A. P. Pathak¹, P. Winnard¹, V. Raman¹, M. Pomper¹, and Z. M. Bhujwalla¹

¹JHU ICMIC Program, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States

Introduction: The discovery of cells with stem-like characteristics in several cancers, that are the most likely to be resistant to therapy and to lead to recurrence and metastasis [1], is offering new paradigms for understanding and treating tumor recurrence and metastasis [2]. Some of the molecular and functional markers that can be used to identify populations enriched with cells with stem-like characteristics are (i) CD44+/CD24- or low phenotype for breast cancer, (ii) exclusion of Hoechst 33342 with a level of hypoxia and choline metabolism (ABC2G2 transporter/BCRP and rhodamine-123 (MDR1) activity, and (iv) tumor growth from low cell inoculums [1, 3-5]. The unique physiological environment of solid tumors is characterized by heterogeneous areas of poor blood flow [6], hypoxia [7], elevated total choline [8], high lactate [9] and low pH [10], which influence a wide-spectrum of phenotypic characteristics of tumors including progression, distant metastasis and response to therapy. Recent studies suggest that hypoxia provides a suitable niche for stem cells to maintain their precursor status. In tumors, hypoxia is also a major cause of radiation and chemoresistance [11]. Here we have performed additional molecular imaging validation and molecular characterization of the role of hypoxia and choline metabolism in increasing stem-like characteristics in breast cancer xenografts and tumors.

Methods: Studies were performed with MDA-MB-231 tumors stably transfected with red-fluorescent tdTomato protein (RFP) expressed under control of the VEGF hypoxia response element (HRE). Xenografts were grown orthotopically in female severe combined immunodeficient (SCID) mice. MR experiments were performed with a Bruker horizontal bore 9.4T animal MR scanner using a home-built RF resonator. Fluorescence imaging of the tumor was performed in vivo with a Xenogen IVIS 200 system, and endpoint fluorescence imaging was performed with a fluorescence microscope using fresh 2-mm tumor slices prepared with a tissue slicer. For SPECT/CT imaging, mice were administrated intravenously with 0.616 mCi of 111In labeled anti-CD44 antibody in 0.17 ml of saline. At 48 h post injection, SPECT images of mice as well as tissue slices were acquired on a Gamma Medica X-SPECT scanner. Additional studies were performed with empty vector (EV) MDA-MB-231 cells and these cells with HIF-1α stably knocked down (Figure 2) to further understand the hypoxic response of stem-like breast cancer cell markers.

Results and Discussion: As before we observed an association between elevated total choline and hypoxia in tumors (Figure 1a) and a co-localization between increased CD44 expression and hypoxia (Figure 1b). We observed a significant increase of CD44, ABCG2 and ALDH1 mRNA levels following hypoxia induced by the hypoxia mimetic cobalt chloride (CoCl2) in MDA-MB-231 cells (Figure 3). The increase of VEGF mRNA confirmed the induction of hypoxia. As anticipated, HIF-1α mRNA did not increase under hypoxia (Figure 3), but we observed an increase of HIF-1α protein under hypoxic conditions (Figure 2). In contrast CD44, ABCG2 and ALDH1 mRNA increase was significantly reduced in cells stably knocked down for HIF-1α, following hypoxia (Figure 3). These data further support the role of hypoxia in increasing the expression of markers associated with stem-like breast cancer cells, and the importance of targeting hypoxia to minimize the burden of cells with stem-like characteristics in tumors.

Acknowledgements: This work was supported by NIH P50 CA103175. We thank Dr. Y. Kato, Ms. Flonne Wildes, Mr. James Fox and Mr Gary Cromwell for valuable technical assistance.


Figure 1a. Distribution of total choline (left) in an MDA-MB-231 HRE-RFP tumor (~250 mm³). Distribution of RFP in 2 mm slice corresponding to the 4 mm MRSI slice (right); the RFP image has not been warped to the MRS image but the association between total choline and hypoxia is evident.

Figure 1b. SPECT image (left) from 2 mm fresh tissue slice of MDA-MB-231 tumor showing the distribution of CD44 expression. RFP image of this tissue section (right) obtained with Xenogen IVIS showing co-localization of fluorescence with high CD44 expression.

Figure 2. MDA-MB-231 empty vector (EV) cells or a transduced population of MDA-MB-231 cells expressing HIF-1α shRNA were maintained in an incubator at 37°C with or without 200 µM of the hypoxia mimetic CoCl2. resolved proteins were transferred to nitrocellulose membrane and probed with monoclonal antibody against HIF-1α and re-probed with monoclonal antibody recognizing HIF-1β.

Figure 3. MDA-MB-231 cells stably expressing HIF-1α shRNA were maintained in an incubator at 37°C with or without 200µg of the hypoxia mimetic CoCl2. Twenty four hours later, total mRNA was isolated and cDNA prepared. Gene expression for VEGF and CD44 was assessed by q-RT-PCR using specific primers. Two different CD44 primers spanning Exon 1 or designed from published data (CD44 total [12]) were designed to recognize all isoforms of CD44. Relative mRNA expression is displayed normalized to values obtained for MDA-MB-231 cells maintained at 20% O2. Values are Mean ± S.D. obtained from three separate experiments.