Comparison of Quantitative Imaging of Cartilage for Osteoarthritis: T2, T1ρ, dGEMRIC, and Contrast-Enhanced CT

C. Taylor1, J. Carballido-Gamio2, S. Majumdar1,2, and X. Li1,2

1BioEngineering, UCSF, San Francisco, CA, United States, 2Radiology, UCSF, San Francisco, CA, United States

Introduction Osteoarthritis (OA) is a chronic degenerative disease characterized primarily by the loss of articular cartilage. Although radiography is the primary clinical method of evaluating OA, radiographs lack the ability to directly image soft tissues and hence is limited to the detection of OA only at late stages of disease progression and is relatively insensitive to biochemical cartilage changes. In contrast, magnetic resonance imaging (MRI) can assess cartilage morphology directly and has shown promise for the detection of soft tissue changes. For example, T2 relaxation times have been correlated with degradation of cartilage matrix. T1ρ relaxation times with macromolecular degradation,1 and T1 values using delayed gadolinium enhanced MR imaging of cartilage (dGEMRIC) with proteoglycan content of cartilage.2 In addition, contrast-enhanced computed tomography (CT) has also been proposed as an alternative to dGEMRIC. In the wake of the development of new imaging methods for assessment of cartilage biochemistry, there is a need for a systematic comparison of the proposed imaging parameters to assess the ability of each. The focus of this work is to compare MRI (T1, T2, and T1ρ) and contrast-enhanced CT in human articular cartilage, in both the presence and absence of gadolinium-based contrast agent.

Methods Five human osteochondral specimens were obtained from OA patients undergoing total knee arthroplasty surgeries. Baseline MR images were obtained; then specimens were soaked overnight at 4°C in an isotonic saline solution containing 1mM Gd in preparation for contrast-enhanced MRI; specimens were again soaked overnight in solution containing 250 mM Gd for contrast-enhanced CT studies. MRI data were acquired on a 3T GE Excite Signa system using a quadrature transmit/receive wrist coil. The protocol included four sequences: sagittal three-dimensional water excitation high-resolution SPGR imaging, T1 mapping using a fast spin-echo inversion recovery sequence (TI = 50, 130, 200, 400, 800, 2100ms), T1ρ mapping employing a spin-lock technique and a 3D SPGR sequence developed previously (time of spin-lock (TSL) = 0, 10, 40, 80 ms, frequency of spin-lock = 500 Hz), and T2 mapping using a nonselective T2 preparation and a SPGR sequence. CT images were obtained on a Scanco XteMCT, and reconstructed at 21μm with software provided with the system. Resulting images underwent rigid registration using the VTK CIGS toolkit. Cartilage was segmented semi-automatically using the first echo T1 images via a Bezier spline-based MATLAB program also developed in-house; the median value for each image slice was computed and used to compute Spearman rank correlations between imaging parameters. T1ρ and T2 values before and after contrast injection were compared using a paired t-test. To illustrate spatial relationships between imaging parameters, a colormap of each was generated and overlaid on the anatomical SPGR image, and pixel-by-pixel Spearman correlations were computed for the slice shown in the figure.

Results T2 values were found to correlate moderately well with postcontrast T1 values (r=0.58) and also with precontrast T1ρ values (r=0.52), which might be expected due to the influence of water mobility. In addition, postcontrast T1ρ values were found to correlate equivalently well with T1ρ and T2 (r=0.58 vs. -0.58). Moreover, contrast-enhanced CT values correlated better with both T1ρ (r=0.76) and postcontrast T1 (r=0.69) better than T2 (r=0.45), as expected since T1ρ is considered to be more sensitive than T2 to destruction of high molecular weight proteoglycans. Spearman correlation data are shown in the table below, with p<0.01 indicated by an asterisk. Figure 1 illustrates the spatial distribution of T1, T2, T1ρ, and CT attenuation values before and after the addition of contrast in sample images from one specimen. Both T1ρ and T2 values after contrast injection were significantly different from those before contrast (P < 0.001).

Spatial comparison of the distribution of imaging parameters within the cartilage was performed using individual pixel data. Pre- and postcontrast T2 values were found to be quite different (pixel-by-pixel t-test p<0.005) and only mildly correlated with each other (pixel-by-pixel Spearman r=0.29). Similar results were found for T1ρ, although spatial correlation was stronger (r-test p<0.005, Spearman r=0.55). Finally, postcontrast T1ρ was found to be highly correlated on a spatial pixel-by-pixel basis with CT data (Spearman r=0.71). Postcontrast T1 and CT data were also correlated with T1ρ spatially (r=0.47 and 0.39, respectively) but not with T2 (r=0.16 and 0.04, respectively). Similarities in the spatial distributions of T1ρ, T2, and postcontrast T1 values are shown qualitatively in the figure.

Discussion There has been much recent interest in the use of imaging techniques to quantify biochemical status and molecular pathways within living organisms. In the area of OA this interest has been directed toward assessment of the molecular state and health of articular cartilage. In particular, dGEMRIC imaging of cartilage has received attention for its intuitive mechanistic appeal relating to measurement of fixed charge density and hence its ability to characterize spatial variations of proteoglycans in cartilage. Employing methodology similar to that of dGEMRIC imaging, contrast-enhanced CT techniques have also been studied as a potential method for imaging proteoglycans in cartilage; as expected, CT attenuation values before and after contrast injection were compared using a paired t-test. To illustrate spatial relationships between imaging parameters, a colormap of each was generated and overlaid on the anatomical SPGR image, and pixel-by-pixel Spearman correlations were computed for the slice shown in the figure.


Acknowledgement The research was supported by NIH K25 AR053633 and R01 AR46905.