Multi-shot Diffusion-Weighted PROPELLER MRI of the Abdomen

J. Deng1,2, A. Stemmer3, F. H. Miller1, T. K. Rhee1, R. Salem1, D. Li1,2, R. A. Omary1,2, A. C. Larson1

1Department of Radiology, Northwestern University, Chicago, IL, United States, 2Department of Biomedical Engineering, Northwestern University, Chicago, IL, United States, 3Siemens Medical Solutions, Erlangen, Germany

Introduction:
Diffusion-weighted imaging (DWI) techniques use water mobility as an exogenous probe for non-invasive interrogation of microstructural tissue properties. Single-shot DW-EPI techniques are routinely used for neuroimaging applications due to relative insensitivity to bulk motion artifacts. However, these single-shot techniques can suffer significant image distortion, chemical shift artifacts, and reduced spatial resolution particularly when extending the imaging field-of-view (FOV) as necessary for abdominal imaging applications. These limitations have significantly complicated routine clinical DWI of the visceral organs. The recently introduced DW-PROPELLER strategy offers the potential to overcome these limitations \cite{1,2}. The PROPELLER sequence uses a multi-shot acquisition strategy while permitting segmental phase correction to reduce bulk motion artifacts. In this study, we evaluated the feasibility of using the multi-shot DW-PROPELLER sequence for diffusion-weighted imaging of the abdomen. We tested the hypothesis that DW-PROPELLER provides accurate quantitative diffusion measurements while improving qualitative image sharpness, distortion, and artifact levels compared to single-shot DW-EPI.

Methods:
The PROPELLER technique uses a multi-shot turbo-spin echo (TSE) acquisition strategy with each segment of data acquired as a single rectilinear blade along a ‘propeller-shaped’ k-space trajectory. From each k-space blade, a low-resolution image is reconstructed permitting phase correction of motion artifacts. Following data correction, k-space blade segments are combined using k-space regridding for high resolution image reconstruction. Our implemented pulse sequence was based upon the BLADE sequence (Siemens Medical Solutions implementation of PROPELLER TSE). Motion-probing gradients separated by a slice-selective 180° refocusing pulse provided the requisite diffusion-weighting. Phantom experiments were performed to test the accuracy of DW-PROPELLER quantitative diffusion measurements (three cylindrical vials consisting of distilled water, acetone and ethanol at room temperature). For abdominal imaging studies, DW-PROPELLER image series were compared to corresponding single-shot spin-echo EPI (SS-SE-EPI) diffusion-weighted image series.

Results:
Representative diffusion-weighted images (b=0 and 502 s/mm\(^2\)) with reconstructed ADC maps acquired using DW-SS-SE-EPI and DW-PROPELLER sequences are shown in Fig. 1 along with an additional 192x192 matrix image series demonstrating the feasibility of improving spatial resolution with DW-PROPELLER. Overall, no image distortion or motion artifacts were observed in the DW-PROPELLER images which provided improved spatial resolution. DW-SS-SE-EPI images were commonly distorted and provided inferior spatial resolution.

Phantom Studies: Representative ADC values of water, acetone and ethanol as measured by the DW-PROPELLER sequence were 2.3x10\(^{-3}\) mm\(^2\)/s, 4.9x10\(^{-3}\) mm\(^2\)/s and 1.3x10\(^{-3}\) mm\(^2\)/s, consistent with those reported previously (2.25-2.51x10\(^{-3}\) mm\(^2\)/s, 4.5-4.8x10\(^{-3}\) mm\(^2\)/s and 1.1-1.2x10\(^{-3}\) mm\(^2\)/s) \cite{3-5}.

Qualitative Comparison: Sharpness, distortion, and ADC organ homogeneity scores were significantly improved for DW-PROPELLER images in each category; artifact level scores were improved at b=0 s/mm\(^2\) but not statistically different at b=502 s/mm\(^2\).

Quantitative Comparison: The ADC map of each organ obtained using the DW-PROPELLER sequence was more homogenous than the ADC map obtained using SS-SE-EPI. Mean D\(_{\text{mean}}\) of liver and pancreatic tissues measured using the DW-PROPELLER sequence were (1.37±0.19)x10\(^{-3}\) mm\(^2\)/s and (2.06±0.23)x10\(^{-3}\) mm\(^2\)/s respectively compared to (1.17±0.14)x10\(^{-3}\) mm\(^2\)/s and (1.82±0.23)x10\(^{-3}\) mm\(^2\)/s as measured using the DW-SS-SE-EPI sequence (mean±SD, no significant difference, p>0.05).

Conclusions:
The DW-PROPELLER sequence is a promising technique for multi-shot diffusion-weighted imaging of abdominal organs. DW-PROPELLER improved image sharpness and reduced distortion while providing accurate isotropic water diffusion measurements. Future pre-clinical studies will evaluate the use of DW-PROPELLER techniques for abdominal oncologic imaging applications (lesion detection, characterization, and therapy assessment).

\[\text{ADC} = \frac{1}{\text{b}} \ln \left(\frac{1}{S_b} \right)\]

Figure 1. Diffusion-weighted images and reconstructed ADC maps acquired using DW-SS-SE-EPI (left), DW-PROPELLER (center) and increased spatial resolution DW-PROPELLER (right, 192x192 matrix).

\[\text{ADC}_{\text{DW-SS-SE-EPI}} = \frac{1}{b} \ln \left(\frac{1}{S_{b=0}} \right)\]

\[\text{ADC}_{\text{DW-PROPELLER}} = \frac{1}{b} \ln \left(\frac{1}{S_{b=0}} \right)\]
