Image Contrast Using the Secondary and Tertiary Eigenvectors in Diffusion Tensor Imaging

J. Zhang1, 2, P. C. van Zijl1, 3, S. Mori1, 3

1Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States, 2Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States, 3F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States

Introduction

In diffusion tensor imaging (DTI), diffusion measurements are fitted into a tensor model. Each diffusion tensor can be equivalently represented by its three eigenvectors (V1, V2 and V3) and associated eigenvalues (λ1, λ2, λ3 of descending magnitude). Various anisotropy indices have been proposed to measure anisotropy of water diffusion, and V1 has been used to reconstruct white matter structures. Even though DTI is an over-simplification for complex anatomical structures, the whole information provided by DTI has not been fully utilized in routine studies. Several studies have shown that V2 can provide additional information [1, 2]. In this study, we investigated DTI-based contrasts that reflect properties of V2 and V3. The relationships between these contrasts and underlying neuroanatomy are investigated using a mouse brain model. Their usefulness in studying cellular events during brain development and tissue segmentation is assessed. Finally, the contrasts are also studied in human brains to assess the usefulness of these contrasts for clinical studies.

Methods

Four anisotropy indices were investigated in this study, and their definition are shown on the right, where \( D_{\text{iso}} = (\lambda_1 + \lambda_2 + \lambda_3)/3 \), and the function \( \min \) returns the smallest inputs. A digital phantom was constructed to study the characteristics of the four anisotropy indices. Depending on the relative magnitude of the three eigenvalues, diffusion tensor can have tubular, planar or spherical shapes [3]. Tubular tensors have high CL values, and planar tensors have high CP values [3]. Tensors that satisfy \( \lambda_1 >> \lambda_2 \geq \lambda_3 \) have high SI values. V1 estimation is robust when CL is high. V2 and V3 estimations are robust when SI and CP are high, respectively. We combined V1 with CL, V2 with SI and V3 with CP to generate V1 CL, V2 SI and V3 CP images. Human and mouse brain images were acquired in previous studies and reanalyzed here [4, 5]. Monte Carlo simulations were performed on the phantom to examine the effect of noise on the eigenvectors and anisotropy indices as described before [6].

Results and Discussion

These new contrasts were first examined using well known anatomical structures. For large fiber bundles in adult mouse brain, the measured anisotropy values (high CL, low SI and CP, table 1) agree with the highly coherent fiber orientations inside these structures. In comparison, the cortical regions have low CL, SI and CP. Mouse cerebellum contains parallel fibers and Purkinje fibers in an orthogonal configuration. Parallel fibers outnumber Purkinje fibers. In DTI results (Fig. 1), V2 CL reveals that the tissue orientation in the cerebellar cortex is along the orientation of the parallel fibers (red, medial-lateral), V2 SI shows that the V3 is in the cerebellar cortex are mostly along the orientation of the Purkinje fiber (green, anterior-posterior). In embryonic mouse cerebral cortex, the V1 CL and V3 CP contrasts provide better tissue differentiation than V1 FA (results not shown here). The morphology of the cortical plate and intermediate zone can be clearly appreciated in the V1 CL and V3 CP images. These results show that the new contrasts can reveal additional anatomical information for tissue differentiation.

The contrasts were applied to human brains. In the human pons (Fig. 2), V1 CL image shows that the regions of the corticospinal tract (cst) are dominated by longitudinal fibers (blue, superior-inferior). Surrounding the corticospinal tracts are pontine crossing fibers (pcf), which are transverse fibers (red, medial-to-lateral). The longitudinal and transverse fibers are orthogonal to each other. In the V2 SI image, the corticospinal tract regions are red, revealing the existence of transverse pontine crossing fibers in the region. In a patient with paraaventricular leukomalacia, V1 CL shows that the longitudinal fibers were damaged and were outnumbered by the transverse fibers (results not shown here). V2 SI shows that residual longitudinal fibers still exist.

These results demonstrate the usefulness of these contrasts in diagnosis of white matter lesions. These contrasts also have limitations. For interpretation of the contrasts, a priori knowledge about axonal organization is imperative.

References: