Map-ISODATA Demarcates Regional Response to Combination rt-PA and 7E3 F(ab')2 Treatment of Embolic Stroke in Rat

L. Li1, Q. Jiang1, G. Ding1, L. Zhang1, Z. Zhang1, J. R. Ewing1, R. A. Knight1, A. Kapke2, M. Lu2, H. Soltanian-Zadeh2, M. Chopp1,4

1Neurology, Henry Ford Health Sciences Center, Detroit, MI, United States, 2Biostatistics and Research Epidemiology, Henry Ford Health Sciences Center, Detroit, MI, United States, 3Radiology, Henry Ford Health Sciences Center, Detroit, MI, United States, 4Physics, Oakland University, Rochester, MI, United States

Introduction

ISODATA analysis using T1, T2, and ADCw maps (map-ISODATA) has proven to be a superior approach to ISODATA analysis using T1 - (T1WI) T2 - (T2WI) and diffusion- (DWI) weighted images (WI-ISODATA)15. In the present study, we investigate the ability of map-ISODATA to classify the different categories of ischemic damage in the lesion area and to evaluate combined thrombolytic (rt-PA) and antiplatelet (7E3 F(ab')2) intervention after embolic stroke in rat.

Materials and Methods

Male Wistar rats (300-350g) subjected to embolic stroke with (n=12) and without (n=10) rt-PA and 7E3 F(ab')2 treatment (4 hours post-MCAO) were followed (at 2, 24 and 48h post-MCAO) with MRI using T1, T2, and ADCw. Ischemic tissue damage was quantitatively analyzed on the immunostained and H&E stained slices. ISODATA was computed from T1, T2 and ADCw maps. The signatures characterized by the map-ISODATA were compared with histological evaluation and were employed to demarcate the specific regions in the lesion.

Results

Our data indicate that the signature described by map-ISODATA is significantly correlated (R=0.82) with the cell number of morphologically intact neurons in the lesion, suggesting that the signature value reflects and quantitatively grades the degree of tissue damage in the lesion area. Based on the segmentation and signature values provided by map-ISODATA at 48h after onset of embolic stroke, the lesion area was divided into three specific regions (Fig. 1C) for each animal, “Region 1”, “Region 2” and “Region 3” assigned, respectively, to severely, moderately and least injured regions on the ISODATA. We used the relative signature (lesion signature normalized to the contralateral side) as an index to distinguish the injury levels of tissue in the lesion. Areas with relative signatures equal or larger than 30 identified “Region 1”. Similarly, areas with relative signatures from 18 to 30, and equal or lower than 18 formed “Region 2” and “Region 3”, respectively. By using the partitions based upon the signature levels in map-ISODATA, T1, T2 and ADCw were sorted in an expected order. Higher signature values corresponded to higher T1 and T2 increments, and a greater change of ADCw throughout the time course studied, indicating that the region with higher signature level was more severely injured by ischemia1-3.

Discussion

Map-ISODATA provides an accurate means to identify lesion area, to distinguish ischemic damage, to trace infarction evolution, and to detect the treatment response. Based upon map-ISODATA, ischemic lesion area can be divided into specific regions, each characterized by a distinct evolution of injury and treatment response. The central core of the ischemic lesion appears as a severely damaged region, with the little hope of being affected by the treatment. Of the remaining moderate and least ischemia-affected regions, the former is a treatment-sensitive region, and the latter has self-mending potential. These data are consistent with observations that severe injury or an irreversible damage usually occurs in the central core of ischemic area1-3. In contrast, MR parameters in the least ischemia-damaged area can return near to the preischemic levels at a late stage of stroke1-3. Our data suggest that although the least ischemia-affected region has the highest chance to improve, the region immediately adjacent to this area and with denser ischemia can also respond to the combined treatment at a later stage of stroke. 7E3 F(ab')2 extends the rt-PA treatment window to at least 4 hours after the onset of embolic stroke of rat.

References