MRI detection of neuronal degeneration in superoxide dismutase 1G93A.G1H transgenic mouse model of amyotrophic lateral sclerosis

Q. Yang¹, D. Zang², H. X. Wang², G. Egan², E. Lopes², S. Cheema²

¹Haward Florey Institute, The University of Melbourne, Melbourne, Australia, ²Haward Florey Institute, The University of Melbourne, Melbourne, Vic, Australia

Introduction: Amyotrophic lateral sclerosis (ALS) is a common form of motor neuron disease (MND). The superoxide dismutase 1 (SOD1) 1G93A.G1H transgenic mouse is a widely used animal model of human ALS/MND ¹,². Neuronal loss in both the spinal cord and brain stem have been found in this animal model by histology ². MRI T₂ hyperintensities in the brain stem of ALS patients have been reported ³. The aim of this study is to investigate the use of MRI in detecting neuronal degeneration in the SOD1 mouse model.

Methods: Four 120 day-old SOD1 mice and three age-matched wild-type mice (control) were studied with a Bruker 4.7T BIOSPEC system using a microimaging probe. Axial T₂-weighted images were acquired using a RARE (fast spin echo) sequence with TR/TE=5000/54 msec, FOV=15x15 mm with 256x256 matrix (in-plane resolution of 58 µm) and slice thickness of 0.5 mm. The scanning time was 42 minutes with 16 NEX for 34 slices. Each mouse was anaesthetised and monitored (respiratory) during the scanning. Subsequently, the mice were sacrificed for histological examination with Nissl staining. The mouse brain was sectioned at 25 µm and immersed in 0.1% cresyl violet solution for 30 minutes before examination. The Howard Florey Institute Animal Ethics Committee approved this project.

Results: MRI T₂ hyperintensities were found in the brain stem in all four SOD1 mice (Fig. 1). These abnormalities correspond to the following nuclei: lateral paragigantocellular (LPGi), rostroventrolateral reticular (RVL), ambiguus (Amb), facial (7N) and motor trigeminal (Mo5) nucleus in the brain stem ⁴. Histology analyses of the corresponding sites revealed marked neuronal degeneration. Other MRI abnormalities of atrophy were observed in the brain stem, cerebellum and cortex of the SOD1 mice (Fig.2).

Discussion: MRI studies of the SOD1 mouse model of ALS have not been reported previously to our knowledge. In this report, we demonstrated MRI can be used to detect atrophy and neuronal degeneration in this model. Advanced imaging techniques including diffusion-weighted imaging and MR spectroscopy may further enhance the power of MRI as a non-invasive method for tracking disease pathology in the SOD1 mice model of ALS, enabling us to investigate disease progression and response to novel drug therapies.

References: