Comparison of gadobenate dimeglumine (Gd-BOPTA) with gadopentetate dimeglumine (Gd-DTPA) for enhanced MR imaging of brain and spine tumors in pediatric subjects

C. Colosimo1, P. Damaerel2, M. Bourne3, M. Van Buchem4, G. Pirovano5, M. Kirchin6

1Dep of Radiology, University of Chieti, Chieti, Italy, 2Dept. of Radiology, University Hospital Leuven, Leuven, Belgium, 3Dep of Radiology, University Hospital of Wales, Cardiff, United Kingdom, 4Dep of Radiology, University Hospital Leiden, Leiden, Netherlands, 5WWMA, Bracco Diagnostics Inc., Princeton, NJ, United States, 6World Wide Medical Affairs, Bracco Imaging Spa, Milan, Italy

Synopsis: Sixty-three pediatric subjects with confirmed brain or spine tumors underwent MR imaging before (T1w- and T2wSE sequences) and after (T1wSE sequences only) injection of either Gd-BOPTA (n=29) or Gd-DTPA (n=34) at a dose of 0.1 mmol/kg BW. Blinded qualitative evaluation revealed significant superiority for Gd-BOPTA for contrast enhancement (p=0.06) and lesion border delineation (p=0.018). Quantitative comparison revealed superiority for Gd-BOPTA over Gd-DTPA for lesion-to-brain contrast, contrast-to-noise ratio and percent enhancement. The superior contrast enhancement may be clinically advantageous in pediatric subjects for the detection and diagnosis of small or poorly enhancing CNS tumors.

Background: Gadobenate dimeglumine (Gd-BOPTA, MultiHance®), Bracco Imaging SpA, Milan, Italy) is a paramagnetic contrast agent whose T1 relaxivity in vivo (r1=9.7 mmol•L·s⁻¹) is approximately twice that of Gd-DTPA and other available gadolinium agents due to a capacity for weak and transient interaction with serum albumin (1,2). In adult subjects Gd-BOPTA provides significantly greater contrast enhancement of enhancing intra-axial brain tumors when compared to that achieved with Gd-DTPA (3), Gd-DOTA (4) and Gd-DTPA-BMA (5). A prospective inter-individual study in 174 pediatric subjects with known or suspected CNS abnormalities recently demonstrated comparable safety and efficacy for Gd-BOPTA and Gd-DTPA (6). The present study qualitatively and quantitatively compares the enhancement achieved after Gd-BOPTA and Gd-DTPA in a sub-population of 63 pediatric subjects with confirmed brain or spine tumors.

Methods and Materials: Sixty-three pediatric patients with confirmed tumors of the brain or spine received an 0.1 mmol/kg BW dose of either Gd-BOPTA (n=29; 18 M/11F, mean age 7.5±4.8 years) or Gd-DTPA (n=34; 13 M/21F, mean age 7.9±4.7 years). MR images were acquired before (T1w- and T2wSE sequences) and within 10 min (T1wSE sequences only) of contrast injection. Blinded unpaired (pre- and post-dose images evaluated separately) and paired (pre- and post-dose images evaluated together) qualitative assessments of technically adequate images in which lesions were found both pre- and post-contrast (Gd-BOPTA: n=24; Gd-DTPA: n=31), were performed to compare pre- to post-dose changes in border delineation, visualization of internal morphology, and contrast enhancement by means of 4-point scales from 1 (poor) to 4 (excellent). Qualitative evaluation were performed by patient and by lesion (25 and 39 lesions for Gd-BOPTA and Gd-DTPA, respectively). Quantitative evaluation of intra-axial brain tumors (22 lesions for Gd-BOPTA, 25 lesions for Gd-DTPA) compared changes in lesion-to-background ratio (L/B), contrast-to-noise ratio (C/N) and % enhancement (%En). Statistical comparison between groups was performed using t-tests at p<0.05.

Results: The results of the unpaired qualitative assessment by patient are shown in Table 1. The pre- to post-dose changes were significantly superior for Gd-BOPTA compared to Gd-DTPA for border delineation (p=0.018) and contrast enhancement (p=0.006). Within-patient paired assessments similarly revealed significant superiority with Gd-BOPTA for contrast enhancement (p=0.04).

Conclusion: As in adult patients, Gd-BOPTA demonstrates significant superiority over Gd-DTPA for enhancement of brain and spine tumors in pediatric patients. The superior contrast enhancement can be attributed to the two-fold greater T1 relaxivity in blood of Gd-BOPTA and may be clinically advantageous for the detection and diagnosis of small or poorly enhancing tumors in subjects for whom other diagnostic imaging techniques may be less desirable.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Gd-BOPTA (n=24)</th>
<th>Gd-DTPA (n=31)</th>
<th>Difference Gd-BOPTA - Gd-DTPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delineation of lesion borders</td>
<td>Pre-dose</td>
<td>Post-dose</td>
<td>Change (post – pre)</td>
</tr>
<tr>
<td></td>
<td>2.5 ± 0.7</td>
<td>3.3 ± 0.6(p<0.001)</td>
<td>0.8 ± 0.8</td>
</tr>
<tr>
<td>Visualisation of internal morphology</td>
<td>Pre-dose</td>
<td>2.5 ± 0.7</td>
<td>3.4 ± 0.6(p<0.001)</td>
</tr>
<tr>
<td>Contrast enhancement of lesions</td>
<td>Pre-dose</td>
<td>2.5 ± 0.6</td>
<td>3.4 ± 0.6(p<0.001)</td>
</tr>
</tbody>
</table>

Qualitative lesion-by-lesion changes during unpaired assessment revealed significant superiority for Gd-BOPTA for border delineation (p=0.01) and contrast enhancement (p=0.001), and marked superiority for visualization of internal morphology (p=0.059). Similar evaluations during paired assessment revealed superiority for Gd-BOPTA for all parameters with significant superiority indicated for contrast enhancement (p=0.001).

Mean post-dose values for L/B, CNR (Fig. 1) and %En were all superior for Gd-BOPTA (0.5±0.4 vs. 0.3±0.4; 9.1±15.4 vs. 2.2±9.9; 66.6±47.4 vs. 42.8±39.0, respectively) although wide differences between patients precluded overall demonstrations of significance.

Conclusion: As in adult patients, Gd-BOPTA demonstrates significant superiority over Gd-DTPA for enhancement of brain and spine tumors in pediatric patients. The superior contrast enhancement can be attributed to the two-fold greater T1 relaxivity in blood of Gd-BOPTA and may be clinically advantageous for the detection and diagnosis of small or poorly enhancing tumors in subjects for whom other diagnostic imaging techniques may be less desirable.