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Abstract. We describe a method to classify the complexity of 
water diffusion in tissue, or tissue structure, from high angular 
resolution diffusion weighted O W )  MR measurements. We fit the 
series of even order spherical harmonics (SHs) to the measured 
data and use an ANOVA deletion of variables test to determine at 
what order the series can be truncated. The level of truncation 
indicates whether the diffusion at each voxel is isotropic, 
anisotropic Gaussian or non-Gaussian. Clusters of non-Gaussian 
voxels are observed consistently in data fiom various regions of 
the human brain with b-values typical of clinical scans. 

Method. DW-MR data was acquired from four healthy volunteers 
using a protocol similar to that outlined by Jones [l]. All subjects 
gave informed consent. Three unweighted (b = 0 s/mm2) images 
were acquired together with 60 DW images with different 
gradient directions spread evenly over the hemisphere, with 
diffusion time A=O.O4s, gradient pulse width 6=0.032s and 
gradient strength G=0.022Tm-', which gives b B 1000 s/mmz in 
each case. The image array is acquired as 96x96 in plane, 
reconstructed as128x128, with a field of view of 220mm and a 
total of 42 slices evenly spaced at 2.5mm intervals were acquired. 
Each DW measurement gives rise to a measure of the diffusion 
coefficient in a particular direction. SHs up to order 8 were fit to 
the set of diffusion coefficient measurements at each voxel by 
computing the least squares fit of these models, [2]. 
The spherical harmonic series is analogous to the Fourier series. 
Any function of the sphere can be described by a linear 
combination of spherical harmonic functions: 

l = 0,  1, 2, ... defmes the order of the SH and m E {-l, ..., 0, ... 1) 
indexes the 21+1 SH functions of order 1; B E [0, R) and q E [0, 
2 ~ )  are the angles of colatitude and longitude, respectively. The 
profile of the diffusion coefficient over the sphere is real valued 
and exhibits antipodal symmetry, so that f(@ qj = f(-@ -q), which 
allows us to reduce the number of parameters required to define 
this series. In particular, we can set the coefficients of all the odd 
order SHs to zero, since these functions represent components of 
functions that are not antipodally symmetric [2]. 
We can truncate this series at any order 0, 2, 4, 6 or 8 by setting 
the coefficients of the SHs above that order to zero. If we truncate 
the series at order 0, we obtain an isotropic model of the diffusion, 
since the single order 0 SH is constant over the sphere. If we 
truncate at order 2, we obtain a Gaussian model equivalent to the 
familiar diffusion tensor [3]. Truncation at higher orders allows a 
range of more complex shapes to be modeled. If we truncate the 
series too low, the model may not reflect the behaviour of the 
underlying diffusion process adequately. On the other hand, if we 
truncate too high, the model will incorporate unwanted noise 
effects. We use sequential ANOVA deletion of variables tests [4] 
to determine at what order the addition of new terms in the SH 
series ceases to improve the fit of the model to the data 
significantly and thus determine the order of the SH model 
required at each voxel. This process yields a map of truncation 
orders that show whether the diffusion at each location in the 
brain is isotropic, anisotropic Gaussian or non-Gaussian. These 

maps indicate the complexity of the tissue structure within each 
voxel and may thus be used as a 'stain' to provide extra 
diagnostic information in pathologies involving neuronal loss, 
degeneration or demyelination, since higher order behaviour will 
tend to disappear in the affected areas. 

Results. The procedure outlined above was applied to the four 
data sets. Three axial slices from one of these data sets are shown 
in figure 1. For each slice, the fractional anisotropy map is shown 
together with the corresponding SH truncation order map. Each 
slice contains distinct clusters of non-Gaussian (mostly order 4) 
profiles (highlighted) indicating significant non-Gaussian 
behaviour in the corresponding tissue regions. In the slice on the 
left, the region corresponding to the pons contains a dense cluster 
of non-Gaussian profiles in precisely the region where the 
inferior-superior pyramidal tracts cross the left-right transverse 
pontine fibres. In the center slice non-Gaussian clusters appear in 
the anterior-posterior optic radiation where it is crossed by left- 
right fibres of the corpus callosum. The right hand slice shows 
that a large proportion of voxels in the corona radiata exhibit non- 
Gaussian behaviour, most likely due to interactions between the 
diverging fibres of the corona radiata and the U-fibres. Results in 
our other data sets are consistent with these fmdincs r21. 
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Figure 1 I ractional anistotropy (top) and truncation order (bottom 
-black is backgroud, dark grey order 0, light grey order 2, white 

order 4 or above) maps for 3 axial slices of human brain data. 
Discussion. We have outlined a method for classifying the 
complexity of diffusive behaviour from sets of high-angular 
resolution DW-MR measurements. More details of the method 
can be found in [2], where a careful validation of the method 
using synthetic data is also described. Maps of this complexity 
provide valuable information for analyzing brain tissue structure. 
Moreover, they indicate where the familiar diffusion tensor 
model, which assumes diffusion is Gaussian, is likely to be 
unreliable. The method has been shown to be effective when 
applied to data acquired with easily achievable imaging 
parameters. 
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