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Introduction

Spatial transformations of images are essential for common post-
processing operations such as registration, which is used to normalise
collections of data sets into a common spatial reference frame. For
scalar images, the application of spatial transformations is
straightforward, since the data value at each point in the transformed
image can be interpolated directly at the corresponding location in the
original image. Transformations of tensor images, however, are more
challenging, because the data has an intrinsic orientation with respect
to the anatomical structure of the image, which must be handled
appropriately.

An algorithm, called the preservation of principal directions (PPD),
is presented that computes the appropriate reorientation of each
diffusion tensor (DT) in a DT-MR image, [1], undergoing a non-rigid
transformation. We also present results using synthetic data to validate
this method. More details can be found in [2].

Methods

In a DT-MR image, the shape and orientation of the measured DTs
reflects the microstructure of the tissue being imaged. If we apply, for
example, a rigid rotation, R, to such an image, we must apply a similar
rotation to each DT to ensure that the microstructural information it
contains is preserved. For the rigid rotation case, this rotation is simple
to achieve by a similarity transform of the DT matrix, D, through R:
D->RTDR, which preserves the size and shape of the DT, but rotates
its axes through R.

An affine transformation is represented by a linear transformation
matrix, F. If we use F directly to compute the DT in the warped image,
i.e., D->FTDF, the eigenvalues of the DT change. This is not desirable.
Although we expect the shape of regions of tissue to change under the
transformation, we expect the underlying microstructure of the tissue
to remain unchanged. Thus, we require a rigid rotation, R, at each
point in the image that reflects the amount of reorientation due to F,
which we can apply to the DT at that point in order to change its
orientation while preserving its shape.

One possible solution to this problem is to decompose F into its rigid
rotation, R, and pure deformation, U, components, which are given by
F =RU, for any linear transformation matrix F, [3]. R can then be used
to reorient each DT in the image as above. This approach is referred to
as the finite strain (FS) reorientation strategy, [2]. A problem with FS
is that there are additional reorientational effects due to U, which
depend upon the original orientation of the image/tissue structure. This
problem is illustrated in Figurel where two images with different
orientational structure undergo the same deforming transformation: a
horizontal shear. The orientation of the horizontal structure is
unaffected by the transformation, but that of the vertical structure is
changed considerably. FS clearly does not treat this case correctly,
since it provides a single, constant R for this affine transformation.

Figure 1. The effect of horizontal shear on anisotropic structures with
different orientations.

To find R in the PPD algorithm, we obtain e, e,, e3, the three
eigenvectors of the DT, and 1;> 1,> 13, the associated eigenvalues. We
define n;=Fey/IFejl, which is the renormalised image of the i-th
eigenvector under F. Note that the n; are non-orthogonal.

Where the diffusion profile is prolate (1;>> l,=~ 13), the orientation of
the tissue microstructure is characterised by e;. The tissue orientation
after the transformation can be found by applying F directly to e; and
normalising the result to obtain n;. So we require a rotation to apply to
the DT that maps e; to n;. Where the diffusion profile is oblate (1;=~
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I,>> 13), the plane of tissue structure is characterised by e; together
with the second eigenvector e;. The affine transformation maps this
plane to a new plane containing n; and n,. So, in this case, we require a
rotation for the DT that ensures that the new e; and e, span the same
plane as n; and n,. In fact, we can take care of both these requirements
in a single rotation, R. PPD computes this R separately at each voxel
and uses it to reorient only the DT in that voxel. R is the unique
rotation matrix that maps ¢; to n; and e, to a unit vector perpendicular
to n; in the plane spanned by n; and n,. The PPD method preserves the
principal direction of the DT through the transformation as well as the
plane of the first two eigenvectors. Therefore, it applies for both
prolate and oblate DTs as well as for intermediate DTs for which 1;>
12> l';

This method is easy to generalise for higher order transformations.
We can describe a higher order transformation by a displacement field,
u(x), then replace F by a local linear model derived from the Jacobian,
Ju(x), of u: F(x) =1+ J4(x) and compute R as before.

Experiments and Results
Three warping algorithms for DT-MR images have been tested. The
first is a control, which uses no reorientation (NR), the second uses FS,
and the third PPD. Results are obtained using synthetic DT data sets
for which the gold standard target images are known for a given F, [2].
For a number of affine transformations, the orientation of e; and e; in
corresponding voxel locations were compared between transformed
images, obtained from each reorientation strategy, and the gold
standard. The angles between these eigenvectors are averaged over
different regions of the synthetic images, which contain distinct types
of DT corresponding to prolate, oblate and spherical diffusion
ellipsoids. Figure 2 shows that the PPD driven warping algorithm is
the only one for which the difference in the well-defined eigenvector
(e; in prolate regions and e; in oblate regions) is close to zero, as it
should be.
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Figure 2 averaged angles between e;'s (left) and es's (right) in regions
with different diffusion characteristics.

Discussion

We have described the preservation of principal directions (PPD)
algorithm to transform each DT in a DT-MR image under a non-rigid
transformation. The development of such an algorithm is a prerequisite
for registration of ensembles of DT-MR images. Results shown
validate the algorithm over synthetic data and demonstrate its
superiority to more naive strategies. Some similar results obtained
from intra-subject human data are presented in [2], but the advantages
of PPD over FS are not apparent there as in these experiments, because
the transformations calculated for these clinical data sets are rigid.
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