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INTRODUCTION 
In this paper, a careful comparison between the Principal 

Component Analysis (PCA) and the Hankel Total Least Squares 
(HTLS) based methods for the automated quantitation of reso- 
nances in large sets of MR spectra is presented. S. Van Huffel et 
al. [l] applied the total least squares method to MRS data quan- 
titation. Their algorithm, called HTLS, was generalized [2] to the 
quantitation of sets of MR spectra, resulting into the HTLSstack 
and HTLSsum algorithms. 

PCA was introduced in MRS data quantitation by R. Stoyanova 
et al. [3]. It has been shown that under some conditions PCA can 
successfully extract quantitative metabolite information from data 
sets without any prior knowledge about the line shape [3][5]. By 
using complex data, PCA can be directly applied to unphased data 
sets and moreover improves peak area estimation with a factor fi 
[4]. Previous studies using PCA were performed in the frequency 
domain and could only relatively quantify the MRS data if complex 
data are used [4]. By choosing an appropriate normalization of 
the first PC, we show here how to quantify peak areas absolutely 
in the frequency domain and how to perform PCA in the time 
domain. In addition, we show under which conditions the HTLS 
based methods outperform PCA and vice versa. 
THEORY 

Suppose we have P MRS signals yr , ye, , yp of N data points 
each. Let y = yi +y~+. .+yp. We can apply the HTLS algorithm 
[l] to the sum y in order to obtain the signal poles and afterwards 
calculate the corresponding amplitudes and phases for each signal 
separately. This algorithm is called HTLSsum. 

The HTLSstack algorithm [2] arranges the N data points of each 
MRS signal yp into a Hankel matrix HP, p = 1,2, , P. These P 
matrices tire stacked into &tack = [ HI HZ HP ]. Again 
we apply HTLS [l] to H,,,,k in order to quantify all signal poles 
for the entire set and then compute the corresponding amplitudes 
and phases for each signal separately. 

PCA is usually performed by means of an eigenvalue decom- 
position. However, the use of the complex SVD leads to more 
accurate parameter estimates. This involves arranging the P sig- 
nals yi, ys, , yp as rows in a matrix D and decomposing D 
as D = UCVH = SVH (H denotes conjugate transpose). The 
columns of V contain the basic shapes of the signals, called prin- 
cipal components (PC). The elements in S = UC are called the 
scores of each PC. 

Now, suppose our set of P MRS signals is composed of a single 
resonance (peak). Each signal yp is then expressed as : yp = sisvi , 
for p=l,..- , P. si and vi are respectively the first column of S 
and V with elements sii and 2rii. 

Using time domain data, the first PC vi needs to be normalized 
in such a way that it represents a unit amplitude signal. Hereto 
we divide vi by its first element vii. The modified scores S = 
2)iisi then represent the absolute amplitudes of the original signals. 
Using frequency domain data, obtained by applying the DFT to 
the rows of MRS signals, we need to normalize vi so that it has unit 
area, i.e., Cr=,vii = 1. The modified scores S = (C~=,V~~)S~ then 
represent the absolute areas under the spectra, which are equal to 
the amplitudes of the signals in the time domain. 
METHODS 

First, we generate a complex signal of 128 data points composed 
of one exponentially damped sinusoid (frequency = 260 Hz, damp- 
ing factor = 100 Hz, amplitude = 100 arbitrary units (a.u.), phase 
= 0”). This signal is subsequently multiplied by 1 to 91 to produce 
a data set which contains 91 signals having the same Lorentzian 
line shape. Random noise with variance 5 and mean 0 is added to 
the real and imaginary parts of the signal. The test is repeated 
100 times. 

Second, we repeat the experiment for a Gaussian line shape. 
The HTLS based methods approximate this line shape by a linear 
combination of several Lorentzians (e.g. 5, as chosen in Figure 2). 

RESULTS 
Figure 1 shows the average relative error of the peak area 

of a Lorentzian line shape as estimated by HTLS, HTLSstack, 
HTLSsum and PCA as a function of the signal-to-noise ratio 
(SNR). HTLSstack and HTLSsum perform the best. Only at low 
SNR, PCA is better than HTLS. 

Figure 1: Lorentzian line shape 

Figure 2 shows the advantage of PCA at very low SNR for a 
Gaussian line shape. Without any prior knowledge about the 
model function, HTLS based algorithms perform not as well as 
PCA at very low SNR, although HTLSstack and HTLSsum yield 
better results than PCA at high SNR. 

Figure 2: Gaussian line shape 

CONCLUSIONS 
PCA demonstrates good performance both in terms of accuracy 

and computational efficiency for MRS data quantitation, but is 
not suitable for direct quantitation of more than one line shape. 
HTLSstack and HTLSsum simultaneously quantify multiple line 
shapes and outperform PCA, in particular when the line shape is 
Lorentdan, since they exploit this prior knowledge. Only at low 
SNR, PCA outperforms the HTLS based methods if the line shape 
is non-Lorentzian. The same results hold for unphased sets. 
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