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Introduction

Dynamic contrast-enhanced MRI using an intravenous contrast tracer
(Gd-DTPA) allows a detection of remnants of viable tumor (including
small, scattered foci) in patients with high-grade Ewing’s sarcoma. A
high density of abnormal capillaries in viable tumor makes a distinction
possible between viable tumor tissue and tumor parts that have been
annihilated by chemotherapy.

In our hospital, the effects of chemotherapy on tumor size and
perfusion is assessed from successive MR-examinations. The dynamic
contrast-enhanced MR-sequence is analyzed by two-compartment
pharmacokinetic modeling which results in estimates of the maximal
signal enhancement, wash-in rate, wash-out rate and local arrival time of
tracer in each voxel [1].

Pharmacokinetic analysis reduces the information in the underlying
MR-signal s(x,y,z,t) consisting of 51 dynamic samples to solely 3−4
pharmacokinetic parameters. However, all spatial information is left out
of consideration because the parameters are estimated on a voxel-by-
voxel basis. In this work, we investigate whether feed-forward neural
networks can be trained to segment the (carefully preprocessed)
dynamic MR-images into three types of tissue: healthy tissue, viable and
nonviable tumor. Our gold standard is a histologic macroslice of which
the orientation and position corresponds with the MR-section under
study. The macroslice specifies the class label of each voxel.

Materials and Methods

After completion of preoperative chemotherapy, the MR-examination
was performed on a 0.5 T super-conductive Gyroscan (Philips) using a
surface coil. One, two or three sections were selected for T1-weighted
dynamic contrast-enhanced imaging using a magnetization prepared
imaging gradient recalled echo technique. The MR-images were
acquired with a repetition time (TR) of 12 msec, an echo time (TE) of
5.7 msec and a prepulse delay time of 741 msec. The flip angle was 30
degrees. The field of view varied per patient depending on the size of
the tumor (200–450 mm), a 256×256 matrix was acquired. The slice
thickness was 8 mm and the slice gap 12 mm. An intravenous injection
bolus of the contrast tracer Gd-DTPA (Magnevistâ ) was given followed
by a saline flush. For each MR-section, 47 to 60 dynamic images were
acquired with a temporal resolution of 3.3 sec.

Let s(x,y,z,t), t ∈  T, denote the dynamic MR-signal obtained from
voxel (x,y,z) at time t. The MR-signal is affected by both random and
systematic distortions: the random noise induced by the MR-scan
device, the postcontrast signal fluctuations caused by the heart beat, and
other types of distortions intrinsic to the MR-technique. The
postcontrast signal fluctuations are caused by a combination of a
heterogeneous distribution of the bolus in the vascular compartment and
the circulatory function of the vascular system. To reduce the random
noise and, most important, to remove the systematic distortion
component in s(x,y,z,t), we use a nonlinear morphological filter [2]:
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with b(t)={ t−(w−1)/2, t+(w−1)/2} . The filter (1) has the property that
high-frequent signal fluctuations (within the interval b) are removed but
that large edges (caused by the wash-in and wash-out of tracer) remain
unaffected.

Generally, the signal strength of s(x,y,z,t) depends on several factors
but the most important factor determining the signal amplitude and level
(offset) is in our case the affine scaling performed by the
(postprocessing) software on the MR-scanner. To reverse this scaling,
the MR-signal is normalized as follows:

�

s x y z t s x y z t r l( , , , ) ( , , , )= − (2)
with r the rescale slope and l the offset, both present in the header files
of the MR-images. The signal 

�

s x y z t( , , , ) is uniformly resampled into a
vector a(x,y,z) with 25 data points, each element at(x,y,z) is provided as
input to the neural network. The input vector to the neural network is

concatenated with a vector a(x,y,z,σ2) that is obtained from the dynamic
MR-images after each image has been blurred with a Gaussian kernel
(we chose the Gaussian kernel because it is the generating function in
the linear scale space [3]). The blurred images add context-information
to the neural network.

The correct class label of each voxel is obtained from the histologic
macroslice. Registration is performed by computing the principal axes
of manually delineated contours in the MR- and histologic images.

Results

 The MR-images of five patients with Ewing’s sarcoma, who
underwent preoperative chemotherapy, were analyzed. The
segmentation results (on a test set) obtained with the trained neural
network are shown in table 1. It is clear that adding blurred versions of
the MR-images to the neural network improves the segmentation result
on the test voxels.

Table 1. Overall correctness and kappa computed on a test set
consisting of 5 patients with Ewing’s sarcoma.

Scale (mm) 0 5 8 10 12 15
Correctness 0.789 0.877 0.880 0.879 0.885 0.886
Kappa 0.516 0.565 0.581 0.567 0.583 0.596

An increasing scale of the Gauss kernel (width of σ2 in mm) leads to
an increasingly better segmentation. However, when too large a scale is
used, small remnants (on a fine scale) tend to be overlooked. Therefore,
we computed the estimated areas of viable tumor, the most important
type of tissue one wants to identify, in each patient. The scale that
resulted in the best area estimates (see table 2) is σ2=10 mm. It is clear
that the size of the remnants is related to the optimal size of the
Gaussian kernel.

Table 2. Correct and estimated areas (measured in number of voxels)
obtained by the neural network (σ2=10 mm).

Patient 1 2 3 4 5
Area (Hist.) 180 227 0 31 326
Area (NN) 160 282 0 0 150
Rel. diff. -11% 24% 0% -100% -54%

Conclusion

 The results indicate that adding information from blurred MR-images
to the neural network improves the segmentation. The analysis of the
individual patients shows that the size of the Gaussian kernel determines
the minimal size of remnants of viable tumor that can be detected. Our
best results were obtained with a kernel size of σ2=10 mm.
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