Proton-Resonance Frequency Shift MR Thermometry is Affected by Changes in the Electrical Conductivity of Tissue

ROBERT D. PETERS AND R. MARK HENKELMAN
Department of Medical Biophysics, University of Toronto
Sunnybrook Health Sciences Centre, Toronto, Canada

Introduction: The proton-resonance frequency (PRF) shift method of MR thermometry provides an easy and practical means of quantitatively monitoring in vivo temperatures for MR-image guided thermal-coagulation therapy. In this study, we identify a potential source of variation in the PRF-shift method of thermometry [1] that manifests as a constant increment in phase-shift per unit change in temperature that is independent of the echo-time (TE) setting. We propose that this phase-shift offset arises from thermally-induced changes in the electrical conductivity and permittivity of the material. To this end, we demonstrate that the apparent PRF-thermal coefficient can be overestimated by as much as 28% in a heating experiment of freshly excised cow liver. A simple method of overcoming this phase-shift offset is presented.

Theory: With the PRF-shift method of thermometry, the phase-shift sensitivity or thermal coefficient is generally modelled as:

$$\Delta \phi / \Delta T = \gamma \cdot B_0 \cdot \alpha \cdot (360°/\text{cycle}) \cdot TE$$

where \(\gamma\) is the gyromagnetic ratio for \(^1H\) nuclei, \(B_0\) is the field strength, and \(\alpha\) is the apparent PRF-thermal coefficient containing contributions from changes in the electron screening constant and magnetic susceptibility [2,3]. In a conductive material, a transmitted \(B_1(t)\) field will undergo amplitude attenuation and phase retardation, giving rise to a variation in tip angles and phase over the object [4]. In particular, the spatial nature of the phase variation in the MR image will depend on the material properties and the imaging coil(s) used to transmit and receive the RF signal. For a linearly-polarized field this phase variation can be characterized by a wavenumber, \(k\), given by:

$$k = \omega / (2\epsilon\mu) \left(\sqrt{1 + (\sigma / \omega \epsilon)}^2 + 1 \right)$$

where \(\epsilon\) is the permittivity, \(\mu\) is the permeability, and \(\sigma\) is the electrical conductivity of the material. Temperature-induced changes in the material's electrical conductivity and, to a lesser extent, permittivity will result in changes in the wavenumber and, thus, the phase-retardation of the \(B_1(t)\) fields. These changes from the reference condition will deposit phase shifts that are independent of the spin-evolution waiting period \(TE\), thus rendering the model in Eq.1 incomplete for estimating temperatures.

Methods and Materials: Temperature-induced phase shifts were measured in 2% agar-filled tubes that were immersed in a 1.8 L container through which either pure water, 20 mM NaCl, 60 mM NaCl, 20 mM MnCl\(_2\), or 60 mM MnCl\(_2\) solution was heated and circulated. The volume occupied by the agar gel-filled tubes was only 10% of the total capacity, so that any phase retardation effects would be primarily due to thermal changes in the properties of the circulating solution. A uniform-heating experiment of a large volume (0.7 L) of water was circulated and removed prior to imaging so as to exclude its effect on the phase retardation. All imaging was performed on a 1.5 T MRI system (GE SIGNA) using a standard-quadrature head coil. Phase-shift ROI measurements were obtained from multiple TE settings of 6,7,8,10, and 15 ms using a spoiled gradient-echo sequence (SPGR). A linear fit was made to the resultant phase-shift data as a function of temperature over the range of 20°C to 80°C to obtain the apparent PRF-thermal coefficient. The phase-shift thermal-coefficient offset was determined by extrapolating the multi-TE results to the \(TE = 0\) intercept (Fig.1).

![Figure 1: The calculated phase-shift temperature sensitivity \((\Delta \phi / \Delta T)\) as a function of the \(TE\) setting in a 9% agar gel sample, using a 20 mM MnCl\(_2\) circulating solution. The above plot suggests the presence of a phase-shift thermal-coefficient offset of -0.29°C. A method of overcoming this apparent offset in determining the PRF-thermal coefficient is indicated using two \(TE\) settings.](https://example.com/figure1)

Results: As seen along the vertical axis of Fig.2, a range of phase-shift offsets were observed in the solutions studied. In the excised liver tissue, an offset of -0.33°C was found, which would have caused an overestimation of the PRF-thermal coefficient by 28%, had only data from the \(TE\) setting of 6 ms been used. Good correlation can be seen between the experimentally-measured phase-shift thermal-coefficient offsets and the modelled wavenumber-thermal coefficients, among the different materials studied (Fig.2).

Conclusion: A \(TE\)-independent offset has been observed in the PRF-shift method of MR thermometry which could lead to erroneous temperature estimates if neglected. We propose that thermally-induced changes in the electrical conductivity and permittivity alter the phase retardation of the transmitted and received \(B_1(t)\) fields and are responsible for the phase-shift thermal-coefficient offsets. We believe that an understanding of this phenomenon may help resolve the discrepancies in the PRF-thermal coefficient reported in the literature.