Accurate T_2 Contrast when using Magnetization Preparation Sequences

W.D. Foltz*, J.H. Brittain†, and G.A. Wright*
Dept. of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada *
Dept. of Electrical Engineering, Stanford University, Stanford, CA †

Introduction:
Magnetization preparation sequences provide a practical means to acquire T_2-weighted images rapidly [1,2]. By scanning different parts of k space within a series of small-tip angle excitations, T_2-weighted images can be acquired in less than a second. Due to this method’s utility and the clinical importance of accurate T_2 contrast in a T_2-weighted image, the magnetization preparation sequence is now included as a stock sequence on many whole-body MR imagers.

However, most implementations of magnetization preparation sequences rely on a $90°/90°/z$ pulse pair for excitation and tip-up. Self-compensation for RF field offsets (ΔB_1) when using this pulse pair introduces a T_2 contribution into the longitudinal stored T_2 contrast. This effect is inherent to all $\pm \theta/\mp \theta$ magnetization preparation sequences and cannot be addressed easily using phase-cycling methods. Within a T_2 measurement, the resultant T_2 measurement error is greater than 5% for $\Delta B_1 > 12\%$. With ΔB_1 in vivo typically on the order of 15 - 20% [3], there is significant room for improvement in current T_2-weighted magnetization preparation sequences. We have demonstrated that the implementation of relatively simple composite $90°$ pulses for both excitation and tip-up provides an appropriate solution to this problem.

Method:
T_2-weighted images were acquired using the following pulse sequence. The excitation pulse was followed by a MLEV pattern of $90°/180°/90°$, composite refocusing pulses [4]. The T_2 contrast was then tipped up to the longitudinal axis and imaged using a spectral-spatial excitation pulse followed by a spiral readout gradient. The refocusing interval was 24 ms. T_2 contrast was preserved following the preparation interval using an RF cycling scheme [5]. TR was long (4 seconds).

The accuracy of the T_2 contrast was evaluated using simulated and experimental T_2 measurements from a MnCl₂-doped water phantom ($T_2 = 160 \pm 2$ ms). The simulation is described elsewhere [4]. Experimental measurements were performed on a 1.5 T GE Signa using the body coil to transmit. T_2's were calculated as a weighted-least squares fit to the mean signals within each region of interest, using T_2-weighted images acquired at four echo times (TE = 11, 57, 104, and 197 ms). The echo times were shifted to account for T_1 signal decay effects during each composite refocusing pulse [4].

To verify the effects of the excitation and tip-up pulses during the preparation interval, T_2 error was mapped to ΔB_1 and static field offsets (ΔB_0) using three excitation and tip-up pulse pairs: 1) $90°$ excitation/$90°/90°$ tip-up; 2) $45°_{-90°}/90°/45°_{x}$ excitation/$45°_{-90°}/90°/45°_{x}$ tip-up; and 3) $360°_{-270°}/90°/90°_{x}$ excitation/$360°_{-270°}/90°/90°_{x}$ tip-up. The first pulse pair represents the simplest possible sequence design and the most common one in current T_2-weighted magnetization preparation sequences. The latter two designs implement relatively simple composite $90°$ pulse pairs which have better ΔB_1 and/or ΔB_0 properties than the $90°/90°$ pulse pair [6]. The $45°_{-90°}/90°/45°_{x}$ pulse compensates for ΔB_1 at the cost of a three-fold increase in pulse duration. The $360°_{-270°}/90°/90°_{x}$ pulse provides dual ΔB_0 and ΔB_1 compensation at the cost of an eight-fold increase in pulse duration. For comparison, T_2 error mapping was also performed using a T_2 measurement with the same refocusing train and data acquisition method, but without the tip-up pulse [4]. This sequence avoids the problems associated with storing T_2 contrast in M_z at the cost of reduced flexibility. The effects on T_2 of imperfections in the excitation pulse were addressed using RF cycling. All studies were performed over $\Delta B_0 \pm 2$ ppm and $\Delta B_1 \pm 25\%$ of the ideal RF amplitude ($\gamma \Delta B_{1,nom} = 616$ Hz).

Results:
We display the maps of T_2 error as contour plots (Fig. 1). Each point on these plots depicts the T_2 error which results at a given ΔB_0 and ΔB_1 corresponding to a voxel in the reconstructed images.

![Figure 1: Mapping of T_2 error to ΔB_0 and ΔB_1 when $\gamma \Delta B_{1,nom} = 616$ Hz. The contour lines illustrate 5% error in T_2 for experimental (solid) and simulated (dashed) data respectively.](image)

The operating region for the T_2 measurement without the tip-up pulse extends to about ± 1.5 ppm in ΔB_0 and $\pm 20\%$ in ΔB_1. Based on these constraints, the magnetization preparation sequence using the $90°/90°/z$ pulse pair is inadequate, with an operating region which extends to only ± 1 ppm in ΔB_0 and to $\pm 12\%$ in ΔB_1. The $45°_{-90°}/90°/45°_{x}$ pulse pair provides ΔB_1 insensitivity, yet its ΔB_0 sensitivity is excessive. The $360°_{-270°}/90°/90°_{x}$ pulse pair performs well for ΔB_1 within 15-20% and ΔB_0 within ± 1.3 ppm. This performance is sufficient for many applications in vivo [3,7]. If required, further ΔB_0 insensitivity can be gained by increasing the RF amplitude.

Discussion:
ΔB_1 effects on the excitation-tip-up pulse pair bias the T_2-weighting of conventional magnetization preparation sequences excessively. Use of a $360°_{-270°}/90°/45°_{x}$ pulse pair for excitation and tip-up ensures an accurate T_2-weighting for ΔB_1 within $\pm 15-20\%$ and ΔB_0 within ± 1.3 ppm, when $\gamma \Delta B_{1,nom} = 616$ Hz. The improved method has value for improving T_2-weighted images and for determining accurate measures of T_2 in vivo.

Acknowledgements:
We thank Jeff Stainsby for his help with pulse sequence programming.